Lipid Therapy for Dyslipidemic Disorders Activates 21st Century Nano Antioxidant Hydrogen as a Potential Anti-COVID-19 Agent: Review.
DOI:
https://doi.org/10.58676/sjmas.v1i7.41Keywords:
Lipid Therapy, Dyslipidemic DisordersAbstract
According to the World Health Organization (WHO), coronavirus infection (COVID-19, (COronaVIrus Disease 2019) is an infectious disease caused by the SARS-CoV-2 virus [1]. SARS-CoV-2 virus, Severe Acute Respiratory Syndrome-related coronavirus 2. Initially considered pulmonary - respiratory pathology, then it turned out to be poly-systemic, with multi-inflammation of many other organs, and central nervous system. Multisystem inflammatory syndrome in adults (MIS-A) [2], SARS-CoV-2 liver infection [3]. In pediatrics Multisystem inflammatory syndrome in children (MIS-C) or PMIS-TS (Pediatric MIS temporarily associated with SARS-CoV-2 infection) [4,5], SARS-COV-2/ COVID-19 in children induce Kawasaki-Like Disease [6]. Neurological manifestations [7], recurrence of COVID-19 infection with meningitis without pulmonary involvement [8]. Brain damage in COVID is primarily neurological, as a material signaling pathway of inflammatory COVID-infection of cerebral vessels. This is important, from the release of these patients, from additional stress, suffering, stigmatization in society, their isolation, intimidation, coercion (bullying) with violation and restriction of their rights. Since, concomitantly with inflammatory lesions of many organs, cognitive deficits are a component of the post-acute consequences of COVID-19 (PASC), where the role of the kynurenine pathway is significant with temporary cognitive impairment [9]. The main pathway for the breakdown of tryptophan is an amino acid, without which the synthesis of serotonin is impossible, which controls the cycles of sleep and wakefulness, which is the precursor of the sleep hormone melatonin
In patients with COVID-19, an imbalance of T-helpers 1 and 2 leads to a cytokine storm that can contribute to myocardial damage [10]. MIS is conditioned caused by immunocompromising (IC) CHAOS - [C]ardiovascular Compromise: shock; [H]omeostasis; [A]poptosis; [O]rgan Dysfunction; [S]uppression of the Immune System with the development of Systemic inflammatory response syndrome (SIRS) and Multiple Organ Dysfunction Syndrome (MODS) [11,12]. With pronounced multiple and other symptoms: Electro - Ion Membrane Distress Syndrome (Syndrome Maria & Irina Vasilieva) [13,14] with membrane manifestations of electrical storm or electromembrane paralysis; Capillary Leak Syndrome; Microcirculatory-Mitochondrial Distress Syndrom [15,16]. Also described: Overlap mechanisms of transient global amnesia and COVID-19 infection [17]; Hypokalemia-stroke mimic [18]; Differential diagnosis of cacosmia and dysgeusia in COVID-19 pandemic [19].
References
Coronavirus disease (COVID-19). (2023). World Health Organization (WHO).
https://www.who.int/health-topics/coronavirus/coronavirus#tab=tab_1
Yao, Q., Waley, L., Liou, N. (2021). Adult presentation of multisystem inflammatory syndrome (MIS) associated with recent COVID-19 infection: lessons learnt in timely diagnosis and management. BMJ Case Rep., 1;14(10):e243114. doi: 10.1136/bcr-2021-243114. PMID: 34598958; PMCID: PMC8488713. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8488713/
Yijin Wang, Shuhong Liu, Hongyang Liu, et al. (2020). SARS-CoV-2 infection of the liver directly contributes to hepatic impairment in patients with COVID-19. Journal of Hepatology., 73: 807–816. https://doi.org/10.1016/j.jhep.2020.05.002
https://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC7211738&blobtype=pdf
Constantin T., Pék T., Horváth Z. et al. (2023). Multisystem inflammatory syndrome in children (MIS-C): Implications for long COVID. Inflammopharmacol., https://doi.org/10.1007/s10787-023-01272-3 https://link.springer.com/article/10.1007/s10787-023-01272-3
Revenco, N., Foca, S.,Vasiliev, I., et al. (2020). Challenges of Pediatric Multisystem Inflammatory Syndrome Associated with Covid-19 - A Series of Clinical Cases. Biomedical Research and Clinical Reviews., 1: 4(027); 1-3. DOI: https://doi.org/10.31579/2692-9406/027
Revenco, N., Eremciuc, R.,Vasiliev I., et al. (2021). SARS-COV-2/COVID19 Induce Kawasaki-Like Disease in Children Experience of Republic of Moldova: A Report of Five Cases. Biomed Research and Clinical Review., 3: 3: 2-6. DOI: https://doi.org/10.31579/2692-9406/055
Kathleen Forero, Raghad Buqaileh, Clare Sunderman, et al. (2023). COVID-19 and Neurological Manifestations. Brain Sci., 13(8): 1137. https://doi.org/10.3390/brainsci13081137
https://www.mdpi.com/2076-3425/13/8/1137
Vasilieva, M., Vasiliev, I., Vasilieva, I., Groppa S. (2022). TU-237. Recurrence of COVID-19 infection with meningitis without pulmonary involvement. Clin Neurophysiol., 141: S53. doi: 10.1016/j.clinph.2022.07.141 Epub 2022 Sep 1. PMCID: PMC9436445.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436445/ (USA. PubMed Central)
https://www.socolar.com/Article/Index?aid=100096057280 ([期刊论文] 作者 SOCOLAR)
https://europepmc.org/article/pmc/pmc9436445 (Europe PubMed Cental)
Lucette A. Cysique., David, Jakabek., Sophia G. Bracken. (2023). The kynurenine pathway relates to post-acute COVID-19objective cognitive impairment and PASC. Annals of Clinical and Translational Neurology., 10(8): 1338–1352 https://doi.org/10.1002/acn3.51825
https://onlinelibrary.wiley.com/doi/epdf/10.1002/acn3.51825
Huang C, Wang Y, Li X, et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet., 395(10223): 497−506. doi: 10.1016/S0140-6736(20)30183-5
Rangel-Fausto MS, Piltet D, Costigan M, et al. (1995). The natural history of the systemic inflammatory response (SIRS). A prospective study. JAMA., 273(2):117−123.
https://pubmed.ncbi.nlm.nih.gov/7799491/
Vasiliev, I., Vasilieva, M., Vasilieva, I. et al. (2016). Aggressiveness syndrome hyperantiinflammatory immune CHAOS dissonance and extracorporeal myelotimospleen perfusia. Togliatti Medical Council., 3-4: 64-67. https://elibrary.ru/item.asp?id=27208738
Vasilieva, Maria, Vasilieva, Irina, Vasiliev, I. et al. (2019) Electro-Ion Membrane Distress Syndrome induces Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME). J Clin Res Anesthesiol., 2:1:1.
https://asclepiusopen.com/journal-of-clinical-research-in-anesthesiology/volume-2-issue-2/3.pdf
Vasilieva, Irina, Vasilieva, Maria, Vasiliev I., et al. (2020) Maria & Irina Vasilieva Syndrome Contributes to the manifestation of Chronic Fatigue Syndrome/ Myalgic Encephalomyelitis Syndrome (CFS / ME). National Congress of UroGynecology. Supliment Ginecologia ro., 30: 4: Supl 2; 28. http://revistaginecologia.ro/system/revista/53/1-42.pdf
Vasiliev, I., Vasilieva, Maria., Vasilieva Irina, et al. (2018). De-installation of the MODs by associating the microcirculatory mitochondrial recruitment with MOST in ELSO. Perinatology Bulletin. Journal of Research Practice Suppliment., 3: 6.
https://mama-copilul.md/images/buletin-perinatologic/BP_2018/3_2018_supliment.pdf
Vasiliev, I., Vasilieva, Maria, Vasilieva, Irina, et al. (2018). Suspendarea sindromului detresei microcirculator–mitocondriale prin recrutarea microcirculator–mitocondrială a situațiilor critice obstetricale. Congres Național al Societății de Obstetrică și Ginecologie din România., 167-168.
https://ibn.idsi.md/vizualizare_articol/152565
Vasilieva, Maria., Gasnaș, Alexandru., Vasilieva, Irina, et al. (2021). Overlap mechanisms of transient global amnesia and COVID-19 infection: review. In: 7th Congress of the Society of Neurologists Issue of the Republic of Moldova, Ed. 7, 16-18 septembrie 2021, Chişinău. Curier Medical., 64, 50. ISSN 2537-6381 (Online). https://ibn.idsi.md/ro/vizualizare_articol/139167
https://ibn.idsi.md/sites/default/files/imag_file/50-50a_2.pdf
Vasilieva, Maria., Istrati, Diana., Vasilieva, Irina., et al. (2022). Hypokalemia- stroke mimic. Case report. In: European Journal of Neurology., S1(29);884. ISSN 1351-5101; EPV 421: Scopus.
https://onlinelibrary.wiley.com/doi/epdf/10.1111/ene.15467
Vasilieva, M., Bejenari, I, Groppa, S. (2021). Differential diagnosis of cacosmia and dysgeusia in COVID-19 pandemic. Clinical case report. J Neurol Sci., 429:119781. doi: 10.1016/j.jns.2021.119781 PMCID: PMC8498521.
https://www.jns-journal.com/article/S0022-510X(21)02477-1/fulltext
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8498521/ PubMed Central
https://europepmc.org/article/pmc/pmc8498521 Europe PubMed Central
citat: https://www.psychiatrist.com/pcc/covid-19/eggnog-no-more-case-cacosmia-cacogeusia-following-covid-19-infection/ J Clin Psychiatry (Portugal).
Vasiliev I. Respiratory support with alveolar recruitment for complex treatment of acute lung injury and acute respiratory distress syndrome. Book of Abtracts III International Congress for Respiratory Suport Krasnoyarsk., 2009; 2-7.
Hack СE, Aarden LA, Thijs LG. (1997). Role of cytokines in sepsis. Adv Immunoljgy., 66: 101−195. doi: 10.1016/s0065-2776(08)60597-0
https://www.sciencedirect.com/science/article/abs/pii/S0065277608605970?via%3Dihub
Vasiliev, I., Vasilieva, Maria., Vasilieva, Irina. (2019). The recruitment of microcirculatory-mitochondrial of critical obstetric situations in the complex multi-organ support therapy reduces pCO2 (AV gap) and the development of the syndrome of acute multi-organ dysfunction. Biochem Mol Biol J.,5: 22. https://journal.odmu.edu.ua/xmlui/handle/123456789/7343
https://www.primescholars.com/conference-abstracts-files/2471-8084-C1-022-001.pdf
https://www.researchgate.net/publication/348076731_Amsterdam_2019_EuroSciCon
Vasiliev, I., Vasilieva, M., Vasilieva, I. et al. (2018). Suspending Microcirculatory-Mitochondrial Distress Syndrom by Recruiting Microcirculatory-Mitocondrial Disorders of Obstetric Critical Situations. Iasi, Romania: National Congressional Society of Obstetric and Gynecological Society of Romania. Sum of Summaries., 2018; 104: 41.
Jankauskas, S.S., Kansakar, U., Sardu, C. et al. (2023). COVID-19 Causes Ferroptosis and Oxidative Stress in Human Endothelial Cells. Antioxidants., 12; 326. https://doi.org/10.3390/antiox12020326
Vasilieva, I., Vasilieva, M., & Vasiliev, I. (2023). Recruitment Microcirculatory - Mitochondrial through a permissive systemic perfusion pressure combats microcirculatory - mitochondrial distress syndrome. Cases report. Special Journal of the Medical Academy and Other Life Sciences., 1(4). https://doi.org/10.58676/sjmas.v1i4.24
https://hollis.harvard.edu/permalink/f/1mdq5o5/TN_cdi_crossref_primary_10_58676_sjmas_v1i4_24
Vincent Jounieaux, Daniel Oscar Rodenstein,Yazine Mahjoub.(2020). On Happy Hypoxia and on Sadly Ignored “Acute Vascular Distress Syndrome” in Patients with COVID-19. American Journal of Respiratory and Critical Care Medicine., 202; 11.
https://doi.org/10.1164/rccm.202006-2521LE PubMed: 3281354
Li RH, Tablin F. (2018). A comparative review of neutrophil extracellular traps in sepsis. Front Vet Sci., 5:291. PMID: 30547040 PMCID: PMC6280561 DOI: 10.3389/fvets.2018.00291
Cojocaru, V., Ceban, E., Groppa, S., Vasilieva Irina, et al. (2020). Como testigo, salvando su propia vida del SARS-COV-2/COVID19. Published on LinkedIn. WAMS.,
Vasilieva, M., Vasilieva, I., Vasiliev, I., Groppa, S., et al. (2020). Intralipid in the Target Treatment of Lipid Peroxidation Disorder Caused by Oxidative and Nitro- Galogenic Stress in Patients with SARS-Cov2 / COVID / 19. Journal of Advances in Medical and Pharmaceutical Sciences., 22(11), 20–30. https://doi.org/10.9734/jamps/2020/v22i1130202
http://dspace.onua.edu.ua/handle/11300/24496?locale-attribute=en
https://journaljamps.com/index.php/JAMPS/article/view/470
Joseph Eldor, MD. (2022). "Combined Covid 19 vaccine and DAILY oral Intralipid or Soybean oil (main component of Intralipid) for the eradication of the Corona Pandemic.” IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS)., 17(1): 32-42.
https://iosrjournals.org/iosr-jpbs/papers/Vol17-issue1/Ser-3/D1701033242.pdf
Joseph Eldor. (2021). “Combined Covid 19 vaccine and daily oralsoybean oil (main component of Intralipid) for the eradication of the Corona Pandemic?” IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT)., 14(7): 54-63.
https://www.iosrjournals.org/iosr-jestft/papers/Vol15-Issue7/Ser-2/G1507025463.pdf
Javid MJ and Zebardast J. (2020). Rescue Therapy by Intralipid in Covid-19 Pulmonary Complications: A Novel Approach. Austin J Anesthesia and Analgesia., 8(2): 1087.
https://austinpublishinggroup.com/anesthesia-analgesia/fulltext/ajaa-v8-id1087.php
LRRC15 leucine rich repeat containing 15.(2023). https://www.ncbi.nlm.nih.gov/gene/131578
Vasilieva, I., Vasilieva, M., & Vasiliev, I. (2023). A Intralipid blocks the entry of the SARS. Special Journal of the Medical Academy and Other Life Sciences., 1(3). https://doi.org/10.58676/sjmas.v1i3.15 https://hollis.harvard.edu/permalink/f/1mdq5o5/TN_cdi_crossref_primary_10_58676_sjmas_v1i3_15
Vasilieva Irina, Vasilieva Maria, Vasiliev I. (2018). Triphosphoric acid, donated, restores heart rhythm disturbances caused by energetically deficient, mitochondrial hypercalcaemia to Ca++ mpt pore lesion. J Clin Res Anesthesiology., 1;1-3.
https://asclepiusopen.com/journal-of-clinical-research-in-anesthesiology/volume-1-issue-2/6.pdf
Teixeira, L., Temerozo, JR., Pereira-Dutra FS., et al. (2022). Simvastatin Downregulates the SARS-CoV-2-Induced Inflammatory Response and Impairs Viral Infection Through Disruption of Lipid Rafts. Front Immunol., 13:820131. doi: 10.3389/fimmu.2022.820131 . PMID: 35251001; PMCID: PMC8895251 https://pubmed.ncbi.nlm.nih.gov/35251001/
Rodrigues-Diez RR, Tejera-Muñoz A, Marquez-Exposito L, et al. (2020). Statins: Could an old friend help in the fight against COVID-19? Br J Pharmacol., 177: 4873–4886. https://doi.org/10.1111/bph.15166
Yuanmei Zhu, Yue Hu, Nian Liu, (2022). Potent inhibition of diverse Omicron sublineages by SARS-CoV-2 fusion-inhibitory lipopeptides. Antiviral Research., 208; 105445. https://doi.org/10.1016/j.antiviral.2022.105445
Vasilieva Ilie, Vasilieva Maria, Vasilieva Irina. (2021). Forty Years Success of No Maternal Mortality in Critical Obstetrics on the Operating Table. A decrease in the increased marker of tissue hypoxia pCO2> (AV-gap) in microcirculatory-mitochondrial distress syndrome in critical obstetrics is achieved by complex methods of recruiting microcirculatory-mitochondrial distress syndrome. Biomedical Research and Clinical Reviews., 4(1).
E-Book | DOI: https://doi.org/10.31579/2692-9406/067
田澤 賢次(著. Kenji Tazawa. (2016). "Nano Bubble Hydrogen Water" Health Act by Olympic Doctor. 単行本 . Amazon.co.jp 幻冬舎 ISBN-10: 4344994663 ISBN-13: 978-4344994669
https://www.amazon.co.jp/-/en/Bubble-Hydrogen-Health-Olympic-Doctor/dp/4344994663
Alwazeer, D., Liu, FF., Wu, XY., LeBaron, TW. (2021). Combating Oxidative Stress and Inflammation in COVID-19 by Molecular Hydrogen Therapy: Mechanisms and Perspectives. Oxid Med Cell Longev., 5513868. PMID: 34646423 PMCID: PMC8505069 doi: 10.1155/2021/5513868 https://pubmed.ncbi.nlm.nih.gov/34646423/
Vasilieva, Irina, Vasilieva, Maria, Vasiliev I., et al. (2019). Role of pCO2 (AV gap) of Multi Organ Dysfunction Syndrome. J Biomed Pharm Sci., 2: 128.
https://repo.odmu.edu.ua/xmlui/handle/123456789/7338
Vasiliev, I. Creciun, A. (1986). Cases of anaphylactic shock and tactics emergency therapy. Courr Med., 5 :51- 53.
Vasiliev, I. Ceban, N. (1989). The lymphotropic therapy with lymph stimulation in complex treatment of exotoxin shock. Health Care., 2:52-53.
Vasilieva. Maria, Vasilieva, Irina, Vasiliev, I. (2018). Neurovegetative correction of diencephalic-hyperkinetic, catabolic adrenergic syndrome. J Clin Res Anesthesiol., 1:2: 1-3.
https://asclepiusopen.com/journal-of-clinical-research-in-anesthesiology/volume-1-issue-2/5.pdf
Vasiliev, I., Vasilieva, M., Vasilieva, I., et al. (2015) The Extracorporeal Bio-Xeno Perfusion (myelo-timo-spleen) in Multi-organ Supportive Therapy (MOST) as a Modulator of Energy, for Immuno Correction Compensatory Anti-Inflammatory Response Syndromes, and Persistent Inflammation, Immuno suppression, Catabolism, and Multi-organ Dysfunction. J Anesth Pati Care., 1(1): 104. doi: 10.15744/2456-5490.1.104
, Vasiliev, I., Malachi. M., Niculita, I. et al. (1996). The extracorporeal bio-xeno perfusion (timo-spleen) for the complex treatment of systemic lupus erythematosus.Courr Med., 2; 41-43.
Vasiliev, I., Nistor, V., Bogdan, V. et al. (1993). The extracorporeal bio-xeno perfusion as a complex therapeutic component of the treatment of septicemia on the background of associated injury. Cour. Med., 2; 56-59.
Raghavendra Rao. M.V, Karindas M M, Vasiliev I. et al. (2022). Chronic Obstructive Pulmonary Disease (COPD)--Failing to Prepare Means Preparing to Fail. International Journal of Medical Science and Current Research., 5; 5; 673-681
M.V.Raghavendra Rao, Vijaykumar Chennamchetty, M M Karindas, Ilie Vasiliev et al. (2022). Breathing Lung Transplantation - A Road to Relief New Lungs with Old Vessels. Journal International Education & Research Journal., 8; 7; 36-39.
https://archive.org/details/httpsierj.injournalindex.phpierjarticleview2533/page/n1/mode/2up
Glad i were on the right track. Transgenic pig as a donor carrier of an immunosyngenic xenoorgan for organ transplantation to a recipient human. January 1984.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Irina Vasilieva, Maria Vasilieva, Ilie Vasiliev
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.